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ABSTRACT 

The development of a two-dimensional,  free turbulent shear layer 
from an arbitrary initial velocity profile is analyzed theoretically.    In- 
cluded in the analysis are effects of both heat transfer and compressi- 
bility.    The mean flow is described by approximate velocity profiles 
containing an unknown position parameter which is dependent upon the 
development length.    Integral forms of the continuity and momentum 
equations are utilized to specify the flow characteristics along the 
streamline which separates the primary and secondary flow regions. 
By applying the Navier-Stokes equations to this dividing streamline, 
one is able to calculate the position parameter and thus complete the 
description of the developing flow field.    Also presented are results of 
extensive calculations which show,  for various external and initial flow 
conditions, the variation of the dividing streamline velocity,  shear 
stress (Stanton number),   and average eddy viscosity.   The theory also 
enables one to estimate the effects of heat transfer and compressibility 
on the spread rate parameter for fully developed mixing zones.    The 
theoretical results are shown to agree with experimental data from a 
number of sources. 

111 
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SECTION I 
INTRODUCTION 

The theory of fully developed free turbulent shear layers,  dating 
from the classical works of Tollmien (Ref.   1) and Gortier (Ref.   2) up 
through the later improvements by Korst (Ref.   3) and Crane (Ref.  4), 
has seen a wide spectrum of application.    Such asymptotic mixing zones 
are characterized by a universal velocity profile and a linear growth 
rate from zero initial thickness.    On the other hand,   comparatively 
little progress has been made in establishing a comprehensive theory 
for the pre-asymptotic behavior of free turbulent layers which develop 
nonlinearly from a finite initial thickness.    This situation,  it might be. 
noted,   is in contrast to a number of successful attacks (Refs. 5, 6, and 7) 
on the corresponding laminar problem. 

A study of developing turbulent layers is important for a number of 
reasons.    First,  there are basic differences between the developing 
flow and the asymptotic case which require exploration.    Furthermore, 
it is desirable to have predictable estimates of the minimum develop- 
ment distance beyond which the simpler asymptotic theory can be con- 
fidently applied.    And finally,  investigation of nonasymptotic flows yields 
some quantitative information about the fully developed regime. 

Some fundamental aspects of turbulent shear layer development 
have been previously explored in experimental studies by Chapman 
(Ref.   8) and Wu (Ref.   9).    In the former case,   incompressible jets with 
initial boundary layer profiles were considered,  whereas the latter in- 
vestigation involved the decay of a step profile in a supersonic mixing 
zone.    Most notable of the reported theoretical treatments is that of 
Nash (Ref.   10),  who,  using an approach related to that presented here, 
considered the development of a boundary layer profile in incompres- 
sible,  isoenergetic flow. 

An approximate method,   reported by Kirk (Ref.   11),   deals with the 
development problem by matching the initial viscous layer momentum 
thickness to that of a hypothetical fully developed free layer which begins 
at some point upstream of the actual origin of mixing.    It should be 
noted that,  while such a technique may be justified on grounds of com- 
putational expediency since it gives reasonable results for nearly 
asymptotic shear layers,  it does not yield any information about the 
fundamental nature of a developing flow field. 

In the present report,   a theory which includes the independent effects 
of both compressibility and heat transfer on the development of an 
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arbitrary initial velocity profile in a steady,  two-dimensional,   free mix- 
ing region is presented.    Although in many instances there are expan- 
sions or compressions just prior to the mixing process which affect the 
initial viscous layer velocity profile,  these are ignored here since they 
have little additional effect on the shear layer development as long as 
the mixing occurs at quasi-const ant pressure. 

The geometry appropriate to the present analysis is depicted 
schematically in Fig.   1.    The free layer grows at an increasing rate 
until the fully developed state is reached.    Of particular interest in the 
present consideration will be the flow along that streamline which 
separates the primary and secondary flow regions.    This is commonly 
known as the "dividing streamline" and will be denoted by the sub- 
script    ]   . 

SECTION II 
FIRST-ORDER FLOW FIELD 

Velocity profiles in the developing field are described by the method 
of Korst (Ref.   3),  in which the usual longitudinal boundary layer equa- 
tion for constant pressure flow is linearized in the Oseen sense (Ref. 12) 
and the kinematic viscosity is interpreted as an eddy viscosity varying 
only in the longitudinal direction.    In dimensionless form,  the resulting 
equation is 

2 
0(ß e        d <f> 

where the normalizing quantities are the initial boundary layer thick- 
ness,   S,   and the adjacent free-stream velocity, U. 

To be consistent with the classical asymptotic theory in which the 
eddy viscosity is <?fd = xU/2a2,   one postulates the form of the average local 
eddy viscosity in the developing flow as e = f{df(iV') where f.(i/0 must 
approach unity in the limit.    One can thus write for Eq.  (1) 

2 a2 deft d2 cf> 

-Af(-A)   ~d^ ~   ~^C 
which under the integral transformation, 

-A 
*=-£r f ^fWd<A (2) 

o 

becomes the normalized heat conduction equation 

d(f> d   <f> 



AEDC-TR-65-184 

The solution to this standard equation for an initial velocity profile given 
by </> = </>i(£) and for zero secondary flow at £~>-°°  is 

0   =   -1- [l   +  erf (T? 

in which 

-  r,   )]+  -=L.           f   0(H)   e   a    da 
J       V"    77-^7 J (3) 

f  =  ^p £ (4a) 

»/p = (4^)"I/2 (4b) 

a =  (77   -  a)/T] 

It is easily shown that,  when f(</0  is unity in Eq.  (2),  one obtains 
f =  (if//2a)2,  and thus ry = ay/x and r/p = 0.    The velocity profile then 
reduces to the usual first-order asymptotic solution,  4> = Va[l + erf^)]. 

The position parameter,   -qp,   as Eq.  (4b) reveals,  is solely a func- 
tion of the transformed length,  £,  and serves in Eq.  (3) to distort the 
asymptotic profile toward the initial profile,   fa.    (Typical profiles are 
shown in Fig.   2.)   Furthermore,  Eq.  (3) shows that the origin of mix- 
ing is represented by ijp ->» . 

To compensate for the inherent error of the first-order profiles, 
the Korst theory utilizes integral equations to localize the mixing zone 
to the appropriate inviscid jet boundary.    The relation between the 
reference or jet boundary coordinates (X, Y) and the intrinsic or first- 
order flow field coordinates (x, y) is (Fig.   3) 

X   =  x 

Y = y - ym (x) 

or in normalized form 
ifj* = if/ 

C* = C~ <mW 

Thus,  in analogy with Eq.  (4a),  one defines 

V* = Vv£* 

From the longitudinal momentum equation in integral form,  the 
coordinate displacement function,  rym = Cm  Vp>  is given by 

1 °o 

*«   =   1R   -   *p   +   1p    /   £-^i2   *t-        I    4-f   d, (5) 
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in which rjR is the effective upper (free-stream) edge of the shear layer. 
The location,  ??,  of any streamline within the mixing region is deter- 
mined from the integral continuity equation.    For the dividing stream- 
line,   7?j is given by 

Vj oc i 

/    ~<f>^  =     /    -|-0(1   -  <p)  d,  - ,     /   f-*i(l   -  <f>i)dt      (6) 

Now for a turbulent Prandtl number of unity,  one may utilize 
Crocco's integral of the energy equation to relate temperature and 
velocity profiles in the mixing zone (including the initial profile).    Thus 

A = .-£>- = 4^ + Z1 - -T5-^ = * + (1 - ^<P (7) 

in which Ts is the temperature in the secondary flow region where cp = 0. 
One may use the above relation with the equation of state for a constant 
pressure ideal gas flow to obtain,  for negligible transverse velocity, 

i-c! p   _ 
p A - C * 6' 

2 
(8) 

where the free-stream Crocco number,  Cx = U/(Umax),  is introduced 
so that the specific heat ratio does not appear in Eq.  (8).    Equa- 
tions (5),  (6),  and (8) enable one to determine rjm, rjj,   and <f>j as func- 
tions of Coo2, A, (pi,  and rjp (see Fig.  4 for typical variations).    Of these 
variables,  all but ryp are independent. 

The Korst theory thus leaves r/p dependent upon i// through Eqs. (2) 
and (4b) in which the kernel, f(^),  of the integral transformation in 
Eq.  (2) is the primary unknown.    Nash (Ref.   10) begins at this point, 
hypothesizing a plausible form for the variation of the eddy viscosity 
and thereby determining T?P. 

The present treatment,  on the other hand,   establishes the position 
parameter in a somewhat more rigorous manner through an application 
of the Navier-Stokes equations to the flow along the dividing streamline. 
The consideration of only a single streamline is easily justified since 
the first-order velocity profile at any longitudinal position is fully 
determined once the value of -qp for that point is known.    The dividing 
streamline is chosen for study not only for simplicity of calculation but 
also because the combination of first-order profiles and integral equa- 
tions is most accurate near the interface of the primary and secondary 
flows.    The major advantage of this approach over that of Nash is that 
no further assumptions as to the behavior of the eddy viscosity,   a 
purely phenomenological quantity,   are necessary. 
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SECTION III 
FLOW ALONG THE DIVIDING STREAMLINE 

In order to render the governing equations in a form convenient for 
application to the dividing-streamline flow,  the relation between space 
derivatives in the physical {ft*, £*) and transformed (77*, 77p) coordinates 
must first be established.    Recalling that q* depends upon both ft* and £* 
but ?7p is a function of ft* only,   one obtains for space derivatives of an 
arbitrary field variable, 0 , 

dQ\        ( dQ \      d-g* ( dQ 
di*j. \ drj*l.      dC*   ~  VP   \drj* 

(9) 
dO \ / <90 \        dq*      Aqv f dQ  \       Aq ip 

dft*l.        \  dq* I.     dqv       Aft*        \  dqv  I.      Aft* 

However,  from geometric considerations,   one can write 

aO \ AQ.        /<J0 

Now the local angle of the dividing streamline is 

dCj* dr7p d 

(10) 

j        \u/. Aft * Aft*      d 7?p   V   r7p 

I AVv      /dr/j 

77p Aft*      y   d77p 77p 

or in more compact notation 

0D (11) 

where 9 = —~. is a function of ft* alone 
l?p     ift* 

A Vi*        Vj and D = — 1— is a function of q„ alone 
"?P -q p 

The combination of Eqs.  (9),  (10),   and (11) thus yields 

dQ 

dft*/' Aft *      A -q (12) 

which relates the two physical space derivatives to a transformed space 
derivative along the dividing streamline. 
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With Eq.  (8) the continuity relationship 

^L*-^2--» <*3> 

can be written nondimensionally as 

dF, dJF.ß) 

where Fi = <£/(A - Coo2^2).    Rearranging,  one obtains 

dß B_ I d<f> d<f>  . 
d£* <f> \diff* + P    dC* (I4) 

in which 
A + C 2 cS: 

A - C 2 <f>'' 00     r 

In terms of stresses,  the two motion equations are 

1 du       , du   \    _       dr       ,       dr 
1   '        dip* dC* }   ~     d£* dxff* 

1 (9 v       , d v ,; lu  a<A* d£* J ~   dC*   '   <?</,> 

where r and m are normal stresses.    With the usual boundary layer 
assumption that £* << if/*, the normal stress derivative in the longi- 
tudinal motion equation can be neglected if flow in the immediate vicinity 
of the origin is excluded from the analysis.    Also by making use of the 
continuity relation,  Eq.  (13),  the inertia terms may be rewritten so that 
the motion equations become 

d(pu2) d(puv.) 
dxfj* + dZ* 

d(pav) d(pv2) 
dxfj*       +       1Z* 

or in nondimensional form 

dF2 d(F2ß) dj 
dip*   +        dC* d£* 

d(F2ß) d{F2ß
2) dS      (      dj 

Bifj* d£* dC* di/,* 

d£* 

dm dr 

H* 
+ 

dijj* 

in which 
F2 = $ Ft 

j   =  r/(PooU
2)(l   -  Cj) 

S  = m/(PooU
2)(l  - Cj) 
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The relation,   dF2 = Fi(R + l) d<£,   along with Eq.  (14) enables one to 
write the two motion equations as 

d] 

dC* 

(9w 

= Ft 

dF, 

dxfr' 

-  2/3R <9J <9S 

(15) 

(16) 
dxjj*        H       dC* H        d(* d£* 

where W = J - F2/8.    By using the eddy viscosity concept,  the transverse 
normal stress can be expressed as 

8 
dv 2    I du dv 

•1 

But the shear stress may be approximated as  r = -^- —-^ so that,   in 

dimensionless form,  the normal stress is 

S =   J dcp 
d£* 

dUß) 
d£* 

dcp     +     d(cpß) 
diff* d£* 

which,   in view of Eq.  (14),  becomes 

S  = -f j[(2R  + 1) Q  + 2(R  - l)ß] 

where 

Q = 
_d_±_ /_d±_ 
di/j*/ d£* 

(17) 

(18) 

After transverse differentiation of Eq.  (17),  the resulting expres- 
sion can be substituted into Eq.  (16) to yield 

aw 
di/j* j. 

dj_ -L  (2R   +   1)Q   -   j.  (R   +   2)ß   +   -y O dF. 
d(* 

Application of Eqs.  (12),   (14),   and (15) to the left side of the above 
equation enables one to write the transverse motion equation as 

di/f; 
— (2R   +  1)Q 

R - 1 
+ TC~ J (19) 

Now with Eqs.  (12),  (15),   and (18),  one obtains 
/ di \ (d<b 

WVi 
F, 

dip- 

dtp   \     ^ dcpj        dqp 

Qj 
d9j 

d7?p 

dcp 

(20) 

(21) 

Also required in Eq.  (19) is an expression for Jj which may be obtained 
through application of the momentum integral equation to a control 
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volume of unit width,   infinitesimal length,   Axjj*,   and semi-infinite ver- 
tical extent (-«><£<£]).    The result,   analogous to the flat plate boundary 
layer expression,   is 

d 

j 

or in dimensionless form 

Jj  = 
where 

K 

diA* 

d 
di/r* 

dr/p 

;i2J/Tip) = ex (22) 

l».] 

Substitution of Eqs.  (20),  (21),  and (22) into Eq.  (19) yields,   after 
division by ??PÖWj = 77P<92 (K - F2jD),  the final form of the transverse 
motion equation as 

ii?p 
OUWj) = gl (23) 

in which gl,  purely a function of the position parameter for specified 
flow conditions,  is given by 

■Fij   (d^j/dr/p) 

K - F2j D 

2       2 Rj  +  1 d^j 

(<v), dr/p 

- (Rj  + DD  + -Cj K 

Typical variations of gx are shown in Fig.  5.    As a result of the integral 
method utilized to specify the dividing streamline,  values of the deriva- 
tives included in the expression for gx must be computed by numerical 
techniques. 

SECTION IV 
POSITION PARAMETER 

The reduced motion equation,  Eq.  (23),  is of second order since 
the quantity Wj contains the derivative d^p/d^*,  and therefore two 
numerical integrations must be performed in order to determine the 
position parameter.    The first integral is 

in V(wj)fd]=   /    g^p = Gt 
(24) 
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Now for the asymptotic regime,  Eqs.  (11) and (22) can be simplified 

since -7^— = 0  and r?p = (a/ib*) -> 0 . 

Thus 
(Jj)fd = CI2j)fd/^ 

and 

(Wj)fd = (I,j - Wl*i\J° = N/ff 

where a is the asymptotic spread rate parameter.    Equation (24) can 
therefore be written as 

Wj  =  0(K - F2]D)  = (N/ff)  eGl <25) 

This determines Ö and thereby Jj and /3j through Eqs.  (11) and (22).    The 
position parameter itself is obtained after a second integration which 
yields 

if,* " J   [***) 
-1 

d??p = 

Witt 1 Eq. (25) one thus obtains 

whe: re 

xjj* 

00 

=     f    S2ivp 

g2 = -  a(K  - F2j D)/N V 

I <- * V""d 
^p 

(26) 

P    6 

Since the function g2 varies inversely with t]p,  values of the integral in 
Eq.  (26) for very large rjp must be estimated by extrapolations of g2. 
Thus one may set 

(8a),        = A, e 

where Ai and A2 are determined from known values of g2. 

Inasmuch as the effects of heat transfer and compressibility on the 
asymptotic shear layer spread rate parameter,  a,  have not been com- 
pletely determined (see Section V),  it is also desirable to express the 
results of the present theory in a more universal form which is inde- 
pendent of la ..  The parameters of interest are then ad,  rather than Q, 
and a reduced development distance i//*/a.    Expressions for these new 
quantities are obtained directly from Eqs.  (25) and (26). 
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SECTION V 
ASYMPTOTIC SHEAR LAYER GROWTH 

Since the asymptotic shear layer velocity profile is purely a function 
of the homogeneous coordinate, 17 = o-y/x,  the growth or spread rate is 
characterized by the parameter,  a,  which is dependent on both Cx

2 and A. 
The exact nature of this dependency has not yet been completely speci- . 
fied despite considerable experimental investigation and theoretical 
postulation. 

Typical of the latter are the works of Abramovich (Ref.   13),  Bauer 
(Ref.   14),  and Channapragada (Ref.   15),  all of which estimate the varia- 
tion of a on the basis of some phenomenological model of free turbulence. 
Maydew and Reed (Ref.   16) present an excellent compilation of values 
of a for isoenergetic mixing from a number of sources.    The uncertainty 
of these results,   revealed by Fig.  6,  has been attributed to widely dif- 
ferent geometries and measurement techniques. 

As was the case in the determination of -qv, the present theory 
allows one to estimate the variation of a without further recourse to any 
particular turbulence model.    This is accomplished through a considera- 
tion of flow conditions along the dividing streamline as the developing 
layer approaches the asymptotic state.    The basis for the present dis- 
cussion is Eq.  (25),   rewritten in the form 

=  e 
CTWj Gt 

N 

st 

(27) 

Curves of the variation of ——:- with t/r*/c display the expected exponen- 

tial approach to the asymptotic condition and suggest that,  for (\jj*/o) -* °°, 
Eq.  (27) may be approximated by 

-TT-=  l-A,eT/ (28) 

where A3 is a constant for specified values of CM
2  and A.    The longi- 

tudinal derivative of Eq.  (28) is therefore 

d(aWi/N)                        ffWj 
=  1 -zr- A(iJ,*/a) 

>urse,  vanishe 
Thus,  since 

<7 W • 
which, of course,  vanishes in the asymptotic limit since ——— -> 1 . 

dWj      \ d(ffWj/N) 
lim *•/*--   (_±£I_]=        d(y,*/q)        =   ! 

1 _  fill ! _     gWi 

10 
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for all flows,  one concludes that,  within the limitations of the simple 
representation of Eq.  (28),  the quantity o-2/N should also be independent 
of both Ceo2 and A.    By using incompressible isoenergetic conditions as 
a reference,  one can then write 

NV/2 
]
 (29) a:ei \Nref 

where the value of crref has been determined experimentally by Liepman 
and Laufer (Ref.   17) to be 12. 

The variation of a with Crocco number for an isoenergetic jet,   as 
found from Eq.   (29),   is plotted in Fig.   6 and falls slightly above the 
Abramovich and Bauer estimates and considerably below the 
Channapragada curve.    While this tends to confirm the general validity 
of Eq.  (29) for isoenergetic conditions,  other values of A yield some- 
what anomalous results.    For example,  the value of a for a cold jet 
(A>1) is predicted to be lower and that for a hot jet (A<1) higher than 
for isoenergetic flow at a given Crocco number.    Furthermore,  for 
Cooa-»l, the curves approach different limits. 

However,   on purely physical grounds,  one would expect a hot jet 
to have greater turbulence intensity than an isoenergetic jet,  other 
things being equal,   and therefore to spread somewhat faster,  i. e.,  to 
have a lower value of a,  with the reverse being true for a cold jet.    In 
addition,  since the limiting condition of unit Crocco number represents 
a stream temperature of absolute zero,  no effect of A is expected at 
this point.    These deviations from the expected behavior suggest that 
a2/N is not completely independent of A as previously postulated and is, 
at most,  independent of Crocco number for a given A. 

A more realistic estimate of the variation of a can be easily ob- 
tained,  however,  by multiplying Eq.  (29) by a function K(A) such that 
all curves converge to the isoenergetic value of a I aref at unity Crocco 
number.    The resulting values are tabulated in Table I and plotted in 
Fig.   7.    Recalling that the actual growth rate is inversely proportional 
to a,  one finds that,  for incompressible flow,  the hot jetj(A = 0.1) spreads 
25 percent faster and the cold jet (A = 10)  about 43 percent slower than 
the isoenergetic jet. 

Unfortunately the lack of extensive experimental growth rate data 
for nonisoenergetic shear layers precludes a critical assessment of the 
present treatment of asymptotic spread rates although the results are 
considered reasonable. 

11 
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SECTION VI 
DISCUSSION OF RESULTS 

In order to illustrate the effects of the independent parameters C^2, A , 
and 4>i on the developing flow,  the variations of position parameter, 
dividing streamline velocity,  dividing streamline shear stress,  and aver- 
age eddy viscosity will be presented.    For additional insight into the 
development process,  it is desirable to examine the variations of the 
dependent variables both with and without the influence of a.    The latter, 
it was noted previously,  can be realized through the use of the reduced 
development distance, \jj*/a ,  as well as the variable, ad,  which,  with 
Eq.   (22),   leads to a reduced shear stress+,   a Jj . 

Shown in Fig.  8 are envelope curves of position parameter for three 
values of A corresponding to hot,   cold,   and isoenergetic jets.    When 
plotted in this form there is little effect of compressibility or initial pro- 
file,   especially for the isoenergetic and cold jet cases.    It is evident 
that,   in many instances,  a mean value of -qv for each A would be suffi- 
cient.    It is also observed that all curves converge to the value of posi- 
tion parameter for nearly asymptotic flow,  viz.,   ??p =   a/xfj* .    The 
corresponding minimum development distance,  <A*min >   required for the 
position parameter to achieve this value is presented as a function of 
C,»2, A , and <f>i in Fig.  9.    The value of <A*min is seen to be proportional 
to A,  Co.,2,  and the power law exponent of the initial velocity profile. 

The variation of position parameter with actual development dis- 
tance for a 1/7-power initial velocity profile is shown in Fig.   10.   These 
curves,  which indicate an increasing effect of compressibility with jet 
stagnation temperature (A"1),  reflect a similar influence on a shown in 
Fig.   7.    Also indicated in Fig.   10 are experimental values of position 
parameter determined by Chapman (Ref.   8) for an isoenergetic incom- 
pressible shear layer.    The agreement is considered good in view of the 
extreme difficulty of the measurement and data reduction techniques 
which were required.    It is also significant to note that the Nash theory 
(Ref.   10),  as a result of its reliance on these experimental results,  pre- 
dicts a slightly more rapid development than the present theory. 

The ratio of the local dividing streamline velocity to the correspond- 
ing fully developed value is plotted against reduced development distance 
in Figs. 11, 12, 13.  The first set of curves (Fig. 11) illustrates the effects 

+For nonisoenergetic flows with unit Prandtl number,  the dividing 
streamline Stanton number is St; = (1 - C^2) Jj • 
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of Coo2 and 4>i  f°r isoenergetic conditions and reveals that compressibility 
has little influence on the development of the 1/4 profile.    On the other 
hand,  the 1/10-power profile,  being more nearly like the ideal initial 
profile of the asymptotic theory,  tends to develop more rapidly for a 
given Crocco number than the 1/4 power.    This initial profile influence 
is further illustrated in Fig.   12 for constant Crocco number and iso- 
energetic flow.    The larger values of n are representative of profiles 
downstream of a Prandtl-Meyer expansion.    It is observed,   for example, 
that the 1/30 profile develops to 95 percent of the asymptotic velocity 
in about one-fifth the distance required for the 1/4 profile.    The heat 
transfer effect shown in Fig.   13 for a 1/7 profile is observed to be 
rather small,   especially for the hot jet case (A = 0.1) . 

The variation of dividing streamline velocity with actual develop- 
ment distance is depicted in Fig.   14 where the fully developed condition 
has been arbitrarily taken as 7/p = 0.01.    These curves again show the 
effects of compressibility and initial profile for isoenergetic flow along 
with the influence of heat transfer for constant Crocco number and a 
1/4-power profile.    The distance required to achieve 7/p = 0.01 with 
Coo2 = 0.9 in isoenergetic flow is observed to be three times the incom- 
pressible value.    A similar ratio exists between the curves correspond- 
ing to stagnation temperature ratios of 0. 1 and 10. 

Shown in Figs.   15 and 16 is the variation of reduced shear stress, 
given as the ratio of local to asymptotic values,  with \jj*/a .    For stagna- 
tion temperature ratios of 1 and 10,  this variation is characterized by 
an overdevelopment or overshoot,  the magnitude of which is propor- 
tional to Coo2 and the power law exponent for a given A.    On the other 
hand,   one finds from Fig.   16 that,   as a percentage of the asymptotic 
value,  the amount of overshoot is proportional to A (inversely propor- 
tional to the jet stagnation temperature).    It is again noted (Fig.   15) that 
the 1/10 profile develops more rapidly than the 1/4 profile. 

The mathematical basis for this overdevelopment can be deduced 
from Eq.  (22).    This relation shows that the dimensionless shear stress 
is a product of two terms,   one of which increases with development dis- 
tance while the other decreases.    Limited confirmation of this type of 
stress variation is found in the experimental work of Mueller et al. 
(Ref.   18),   in which shear stresses larger than the fully developed values 
were measured near the origin of an incompressible isoenergetic shear 
layer. 

The variation of actual shear stress with yV* is indicated in Fig.   17. 
It is seen that the peak stress has shifted further downstream than in 
Fig.   15 because of the change in a.    One also finds a significant influ- 
ence of heat transfer on the value of j;.    The stress values for the hot 
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jet (Fig.   18) are twice those for isoenergetic flow,   whereas the values 
for the cold jet case are almost an order of magnitude smaller. 

Also of interest is the variation of the average eddy viscosity across 
the shear layer.    One can write the ratio of the local value of e to the 
asymptotic value as 

—*—= f (<A) = - T, 
P if/* / a 

where ad and i//*/a are known functions of 77p through Eqs.   (25) and (26). 
It will be recalled that the original formulation of the first-order 
motion equation requires that the function f(i//) approach unity in the 
asymptotic limit.    That this is indeed the case is shown in Fig.   19 
where envelope curves for each A are again indicated.    The magnitude 
of the eddy viscosity ratio is seen to be generally proportional to A. 
The similarity between Figs.   8 and 19 is readily apparent since one may 
show that the viscosity ratio is unity when r/p = O/\JJ* . 

SECTION VII 
CONCLUSIONS 

This study of free turbulent shear layer development leads one to 
conclude that: 

1. The present formulation,  based on the application of the 
Navier-Stokes equations to the dividing streamline as deter- 
mined by the Korst theory,   is somewhat more rigorous than 
the analysis of Nash and considerably more perceptive than 
that of Kirk. 

2. The position parameter is primarily a function of the stagna- 
tion temperature ratio and almost independent of initial velocity 
profile for a given Crocco number.    There is a minimum 
development distance,   inversely proportional to jet stagnation 
temperature,   beyond which the position parameter is given by 
rjp = o/i[j* . 

3. As required in the formulation of the first-order flow field 
motion equations,  the average eddy viscosity across the shear 
layer monotonically approaches an asymptotic value. 

4. In general the effects of initial profile,   free-stream Crocco 
number,   and heat transfer on the development process,   as pre- 
dicted by the present theory,   are reasonable and in agreement 
with available experimental data as well as purely physical 
reasoning. 
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Fig. 1   Geometry for Developing Free Turbulent Shear Layer 
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